Proactive AI vs. Chatbots: A Technical Deep Dive
Chatbots wait for you to ask. Proactive AI acts before you even realize you need it.
This isn't a philosophical distinction—it's an architectural one. Let's build both and compare.
The Chatbot Architecture
Classic chatbot (ChatGPT, Claude, etc.):
User Input → LLM → Response → Display
Simple. Effective. Completely reactive.
You ask, it answers. That's it.
The Code
async function chatbotResponse(userMessage: string): Promise<string> {
const response = await openai.chat.completions.create({
model: "gpt-4",
messages: [
{ role: "system", content: "You are a helpful assistant." },
{ role: "user", content: userMessage }
],
});
return response.choices[0].message.content;
}
Problem: This only works when the user initiates. It can't:
- Monitor external events
- Trigger actions based on conditions
- Alert users proactively
The Proactive AI Architecture
Proactive AI watches the world and acts when conditions are met:
External Event → Condition Check → Agent Decision → Action (Alert/Execute)
The user doesn't prompt it. It prompts the user.
Example: Price Drop Agent
// Background job running every hour
async function priceMonitorAgent() {
// Get all watched products
const products = await db.product.findMany({
where: { monitoring: true }
});
for (const product of products) {
// Fetch current price
const currentPrice = await fetchPrice(product.asin);
// Decision logic
if (shouldAlert(product, currentPrice)) {
// Proactive action: call the user
await alertUser(product.user, {
product: product.name,
oldPrice: product.lastPrice,
newPrice: currentPrice,
savings: product.lastPrice - currentPrice,
});
// Update state
await db.product.update({
where: { id: product.id },
data: { lastPrice: currentPrice }
});
}
}
}
function shouldAlert(product: Product, currentPrice: number): boolean {
// Agent decides based on:
// 1. User preferences (persona)
// 2. Historical patterns
// 3. Predicted trends
const priceDrop = ((product.lastPrice - currentPrice) / product.lastPrice) * 100;
// Deal Hunter: alert on any 10%+ drop
if (product.persona === "DEAL_HUNTER" && priceDrop >= 10) {
return true;
}
// Patience Pro: alert on 30%+ drop
if (product.persona === "PATIENCE_PRO" && priceDrop >= 30) {
return true;
}
// Predicted minimum approaching?
const forecast = predictPrice(product.history);
const nearMinimum = currentPrice <= forecast.predictedMin * 1.05;
return nearMinimum;
}
Key difference: The agent monitors continuously and decides when to act.
Why This Matters
Chatbot Workflow
- User opens app
- User types: "Did the price drop?"
- Bot checks and responds
- Problem: User has to remember to check
Proactive AI Workflow
- Price drops
- AI calls user: "Price dropped to $299"
- User decides to buy
- Result: Zero cognitive load
Building Proactive AI: The Architecture
Here's how we structure Autonomy products:
1. Event Monitoring Layer
// Cron job (Vercel Cron)
export const config = {
runtime: 'edge',
// Runs every hour
schedule: '0 * * * *',
};
export default async function monitorEvents(req: Request) {
// Check all active monitors
const monitors = await getActiveMonitors();
await Promise.all(
monitors.map(monitor => evaluateConditions(monitor))
);
return new Response('OK');
}
2. Decision Engine
async function evaluateConditions(monitor: Monitor) {
// Fetch current state
const currentState = await fetchState(monitor.target);
// Use LLM for complex decisions
const decision = await openai.chat.completions.create({
model: "gpt-4",
messages: [{
role: "system",
content: `You are a proactive AI agent monitoring ${monitor.type}.
Current state: ${JSON.stringify(currentState)}
User preferences: ${JSON.stringify(monitor.preferences)}
Should you alert the user? Respond with YES or NO and reasoning.`
}],
temperature: 0, // Deterministic
});
if (decision.content.startsWith("YES")) {
await triggerAction(monitor, currentState);
}
}
3. Action Layer
async function triggerAction(monitor: Monitor, state: any) {
switch (monitor.actionType) {
case "PHONE_CALL":
await callUser(monitor.userId, state);
break;
case "SMS":
await sendSMS(monitor.userId, state);
break;
case "EMAIL":
await sendEmail(monitor.userId, state);
break;
case "EXECUTE":
// Autonomous execution (e.g., book appointment)
await executeAction(monitor.action, state);
break;
}
// Log for analytics
await logAction(monitor, state);
}
The Technical Challenges
1. State Management
Proactive AI needs to remember context across sessions.
interface AgentState {
lastCheck: Date;
lastAlert: Date;
userResponded: boolean;
conditionsMet: number; // Prevent spam
context: Record<string, any>;
}
2. Rate Limiting
Don't alert users every 5 minutes. Be smart about timing.
function canAlert(monitor: Monitor): boolean {
const hoursSinceLastAlert =
(Date.now() - monitor.lastAlert.getTime()) / (1000 * 60 * 60);
// Wait at least 24 hours between similar alerts
if (hoursSinceLastAlert < 24) {
return false;
}
return true;
}
3. False Positives
Over-alerting kills trust. Tune thresholds carefully.
We use a confidence score:
interface AlertDecision {
shouldAlert: boolean;
confidence: number; // 0-100
reasoning: string;
}
// Only alert if confidence > 80%
if (decision.confidence > 80) {
await alert(user);
}
Real-World Examples
Autonomy Receptionist
Reactive bot: "Ask me about our hours" Proactive agent: Answers phone calls autonomously, books appointments, routes to humans when needed
Autonomy PricePulse
Reactive bot: "Check if price dropped" Proactive agent: Monitors 24/7, calls you when it's time to buy
The ROI of Proactive AI
Chatbot engagement: 3-5% daily active users Proactive AI engagement: 60-70% response rate to alerts
Why? Because you're solving the problem before they even know they have it.
How to Build Your Own
- Identify the event (price change, call received, appointment time)
- Define conditions (when should AI act?)
- Choose action (alert, execute, escalate)
- Monitor & tune (reduce false positives over time)
Starter Template
// 1. Monitor (cron job)
export async function monitoringAgent() {
const users = await getActiveUsers();
for (const user of users) {
const event = await checkForEvent(user);
if (event && meetsConditions(event, user.preferences)) {
await takeAction(user, event);
}
}
}
// 2. Decision
function meetsConditions(event: Event, prefs: UserPrefs): boolean {
// Your logic here
return event.value > prefs.threshold;
}
// 3. Action
async function takeAction(user: User, event: Event) {
await notifyUser(user, `Event detected: ${event.description}`);
}
The Future
Today: Proactive AI monitors and alerts.
Tomorrow: Proactive AI executes autonomously.
Imagine:
- Your AI receptionist automatically booking appointments (no human approval)
- Your price agent automatically purchasing products (within budget)
- Your scheduling agent automatically declining meetings (based on your preferences)
That's the endgame. Full autonomy.
See proactive AI in action: Autonomy Receptionist | PricePulse